A Bayesian Network Model for Predicting the Cooling Load of Educational Facilities
نویسندگان
چکیده
In the U.S., educational facilities consume a large amount of energy. Model predictive control schemes can improve the energy efficiency of educational facilities. Accurate and fast prediction of the cooling load is essential to performances of model predictive control schemes. Although many methods for the cooling load prediction were proposed, they are not suitable for educational facilities due to the lack of an efficient way to reflect the impact of internal activities on the cooling load. After analyzing the characteristics of cooling load of educational facilities, we proposed to use the day type instead of the day of the week as the input for the prediction. Then we constructed a Bayesian Network model based on that. To evaluate how the proposed inputs enhance the cooling load prediction, we also implemented the other Bayesian Network model with inputs recommended by the literature. To assess performances of those models, we performed a case study in which on-site measured cooling load and meteorological data was used for the training and testing. The results show that the Bayesian Network models can capture the trend of cooling load even with a limited size of training data. Replacing the day of the week by the day type can significantly improve the accuracy of cooling load prediction for educational facilities.
منابع مشابه
Provide a Predictive Model to Identify People with Diabetes Using the Decision Tree
Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...
متن کاملImprove Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network
The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...
متن کاملDIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES
The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملA Bayesian Approach for Predicting Building Cooling and Heating Consumption
This research proposes a Bayesian approach to include uncertainty that arises from modeling process and input values when predicting cooling and heating consumption in existing buildings. Our approach features Gaussian Process modeling. We present a case study of predicting energy use through a Gaussian Process and compare its accuracy with a Neural Network model. As an initial step of applying...
متن کامل